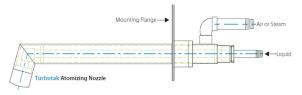


PRDUCT BULLETIN SPRAY EVAPORATIVE COOLERS

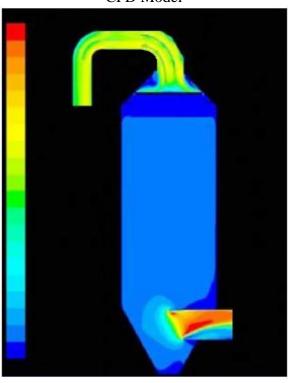

In anticipation of more stringent regulations for the control of dioxin / furan I-TEQ emissions from steel producing electric arc furnaces, cement kilns, and secondary aluminum recovery operations, Amerair reintroduces its spray evaporative cooler product line.

The first of the two design features upon which successful spray evaporative coolers are based is proper spray atomization. To this end Amerair offers both hydraulic "spill back" and compressed air atomized nozzles. Spill back spray nozzles utilize high pressure hydraulic pumps with return throttling valves to provide the feed spray as shown in the schematic below:

Alternately, compressed air atomization systems are used when lower gas volumes or lower inlet temperatures dictate. An example of such is shown to the right.

Proper application of either spray technology requires thorough knowledge of heat and mass transfer through the evaporative cooling process. Amerair utilizes proprietary software that accounts for: nozzle atomization performance, controlled temperature differential and ground level adiabatic saturation temperature to determine the heat and mass transfer rate to set the tower residence time. This ensures continuous dry operation at the tower outlet.

Gas Conditions and Nozzle Performance


INLET TEMPERATURE de	720		Gas Volume Inlet ACFM	544977
			Added 100 ACFM	79405
OUTLET TEMPERATURE	350		Added Compressed Air ACFM	667.02
			Total Vol	725049
WET BULB TEMP deg F	151		Vessel Section area	1519.8
	lamete.	% in Class	wit area	Size Class base
ENTER DROPLET SIZE	00L1	00L2		
DISTRIBUTION IN COLUM	358.2	0.01	4028.8	398
AND % IN EACH CLASS IN	3213	0.01	3241.5	357
COLUMN 2 (19 entries for	366	0.08	28128	384
each is required, units	2025	0.74	96540	225
are microns) (legin with	156.5	3.11	239174	174
largest and end with	127.8	7.20	369458	142
amalest	101.7	11.37	369357	113
	81	14.40	206082	90
	63.9	13.43	172190	71
	513	12.83	108021	57
	405	9.85	50726	46
	32.4	8.43	27791	36
	25.2	4.89	9746.8	28
	20.7	4.44	5972.5	23
	162	3.10	2552.9	18
	126	2.02	1005	14
	9.9	1.17	359.76	11

Evaporative Tracking, time & temp

The second design feature required for successful evaporative cooler design is proper gas flow distribution that ensures spray distribution in the gas and eliminates side wall wetting. Amerair utilizes CFD modeling in all of its spray tower designs to position and size its proprietary inlet and outlet distribution devices for proper flow distribution and flawless performance.

CFD Model

Whether meeting CISWI standards, EAF I-TEQ requirements or other process gas cooling needs, let the experts at Amerair provide the correct tower application and sizing.